Lucene初级教程

  categories:搜索资料  author:

来源:互联网

1 lucene简介
1.1 什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像www.baidu.com 或者google Desktop那么拿来就能用,它只是提供了一种工具让你能实现这些产品。
2 lucene的工作方式
lucene提供的服务实际包含两部分:一入一出。所谓入是写入,即将你提供的源(本质是字符串)写入索引或者将其从索引中删除;所谓出是读出,即向用户提供全文搜索服务,让用户可以通过关键词定位源。
2.1写入流程
源字符串首先经过analyzer处理,包括:分词,分成一个个单词;去除stopword(可选)。
将源中需要的信息加入Document的各个Field中,并把需要索引的Field索引起来,把需要存储的Field存储起来。
将索引写入存储器,存储器可以是内存或磁盘。
2.2读出流程
用户提供搜索关键词,经过analyzer处理。
对处理后的关键词搜索索引找出对应的Document。
用户根据需要从找到的Document中提取需要的Field。
3 一些需要知道的概念
3.1 analyzer
Analyzer是分析器,它的作用是把一个字符串按某种规则划分成一个个词语,并去除其中的无效词语,这里说的无效词语是指英文中的“of”、“the”,中文中的“的”、“地”等词语,这些词语在文章中大量出现,但是本身不包含什么关键信息,去掉有利于缩小索引文件、提高效率、提高命中率。
分词的规则千变万化,但目的只有一个:按语义划分。这点在英文中比较容易实现,因为英文本身就是以单词为单位的,已经用空格分开;而中文则必须以某种方法将连成一片的句子划分成一个个词语。具体划分方法下面再详细介绍,这里只需了解分析器的概念即可。
3.2 document
用户提供的源是一条条记录,它们可以是文本文件、字符串或者数据库表的一条记录等等。一条记录经过索引之后,就是以一个Document的形式存储在索引文件中的。用户进行搜索,也是以Document列表的形式返回。
3.3 field
一个Document可以包含多个信息域,例如一篇文章可以包含“标题”、“正文”、“最后修改时间”等信息域,这些信息域就是通过Field在Document中存储的。
Field有两个属性可选:存储和索引。通过存储属性你可以控制是否对这个Field进行存储;通过索引属性你可以控制是否对该Field进行索引。这看起来似乎有些废话,事实上对这两个属性的正确组合很重要,下面举例说明:还是以刚才的文章为例子,我们需要对标题和正文进行全文搜索,所以我们要把索引属性设置为真,同时我们希望能直接从搜索结果中提取文章标题,所以我们把标题域的存储属性设置为真,但是由于正文域太大了,我们为了缩小索引文件大小,将正文域的存储属性设置为假,当需要时再直接读取文件;我们只是希望能从搜索解果中提取最后修改时间,不需要对它进行搜索,所以我们把最后修改时间域的存储属性设置为真,索引属性设置为假。上面的三个域涵盖了两个属性的三种组合,还有一种全为假的没有用到,事实上Field不允许你那么设置,因为既不存储又不索引的域是没有意义的。
3.4 term
term是搜索的最小单位,它表示文档的一个词语,term由两部分组成:它表示的词语和这个词语所出现的field。
3.5 tocken
tocken是term的一次出现,它包含trem文本和相应的起止偏移,以及一个类型字符串。一句话中可以出现多次相同的词语,它们都用同一个term表示,但是用不同的tocken,每个tocken标记该词语出现的地方。
3.6 segment
添加索引时并不是每个document都马上添加到同一个索引文件,它们首先被写入到不同的小文件,然后再合并成一个大索引文件,这里每个小文件都是一个segment。
4 如何建索引
4.1 最简单的能完成索引的代码片断
IndexWriter writer = new IndexWriter(“/data/index/”, new StandardAnalyzer(), true);
Document doc = new Document();
doc.add(new Field(“title”, “lucene introduction”, Field.Store.YES, Field.Index.TOKENIZED));
doc.add(new Field(“content”, “lucene works well”, Field.Store.YES, Field.Index.TOKENIZED));
writer.addDocument(doc);
writer.optimize();
writer.close();
下面我们分析一下这段代码。
首先我们创建了一个writer,并指定存放索引的目录为“/data/index”,使用的分析器为StandardAnalyzer,第三个参数说明如果已经有索引文件在索引目录下,我们将覆盖它们。然后我们新建一个document。
我们向document添加一个field,名字是“title”,内容是“lucene introduction”,对它进行存储并索引。再添加一个名字是“content”的field,内容是“lucene works well”,也是存储并索引。
然后我们将这个文档添加到索引中,如果有多个文档,可以重复上面的操作,创建document并添加。
添加完所有document,我们对索引进行优化,优化主要是将多个segment合并到一个,有利于提高索引速度。
随后将writer关闭,这点很重要。
对,创建索引就这么简单!
当然你可能修改上面的代码获得更具个性化的服务。
4.2 索引文本文件
如果你想把纯文本文件索引起来,而不想自己将它们读入字符串创建field,你可以用下面的代码创建field:
Field field = new Field(“content”, new FileReader(file));
这里的file就是该文本文件。该构造函数实际上是读去文件内容,并对其进行索引,但不存储。

2. Lucene 教程

Lucene是apache组织的一个用java实现全文搜索引擎的开源项目。 其功能非常的强大,api也很简单。总得来说用Lucene来进行建立 和搜索和操作数据库是差不多的(有点像),Document可以看作是 数据库的一行记录,Field可以看作是数据库的字段。用lucene实 现搜索引擎就像用JDBC实现连接数据库一样简单。

Lucene2.0,它与以前广泛应用和介绍的Lucene 1.4.3并不兼容。 Lucene2.0的下载地址是http://apache.justdn.org/lucene/java/
2.1 文本文件索引建立 :

1、在windows系统下的的C盘,建一个名叫s的文件夹,在该文件夹里面随便建三个txt文件,随便起名啦,就叫”1.txt”,”2.txt”和”3.txt”啦
其中1.txt的内容如下:

中华人民共和国
全国人民

而”2.txt”和”3.txt”的内容也可以随便写几写,这里懒写,就复制一个和1.txt文件的内容一样吧

2、下载lucene包,放在classpath路径中
建立索引:

import java.io.BufferedReader;

import java.io.File;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.Date;

import org.apache.lucene.analysis.Analyzer;

import org.apache.lucene.analysis.standard.StandardAnalyzer;

import org.apache.lucene.document.Document;

import org.apache.lucene.document.Field;

import org.apache.lucene.index.IndexWriter;

 

public class TextFileIndexer {

public static void main(String[] args) {

 

try {

File fileDir = new File(“c:\\s”);

 

/**//* ?这里放索引文件的位置? */

File indexDir = new File(“c:\\index”);

Analyzer luceneAnalyzer = new StandardAnalyzer();

IndexWriter indexWriter = new IndexWriter(indexDir, luceneAnalyzer, true);

File[] textFiles = fileDir.listFiles();

long startTime = new Date().getTime();

 

// 增加document到索引去??? ??????

for (int i = 0; i < textFiles.length; i++) {

if (textFiles[i].isFile() && textFiles[i].getName().endsWith(“.txt”)) {

System.out.println(“File:” + textFiles[i].getCanonicalPath() + “正在被索引.”);

String temp = FileReaderAll(textFiles[i].getCanonicalPath(), “GBK”);

System.out.println(temp);

Document document = new Document();

Field FieldPath = new Field(“path”, textFiles[i].getPath(), Field.Store.YES, Field.Index.NO);

Field FieldBody = new Field(“body”, temp, Field.Store.YES, Field.Index.TOKENIZED, Field.TermVector.WITH_POSITIONS_OFFSETS);

document.add(FieldPath);

document.add(FieldBody);

indexWriter.addDocument(document);

}

}

// optimize()方法是对索引进行优化

indexWriter.optimize();

indexWriter.close();

 

// 测试一下索引的时间

long endTime = new Date().getTime();

System.out.println(“这花费了” + (endTime – startTime) + “毫秒来把文档增加到索引里面去!” + fileDir.getPath());

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

 

public static String FileReaderAll(String FileName, String charset) throws IOException {

BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream(FileName), charset));

String line = new String();

String temp = new String();

while ((line = reader.readLine()) != null) {

temp += line;

}

reader.close();

return temp;

}

}

索引的结果:

File C:\s\ 1 .txt正在被索引
中华人民共和国全国人民2006年
File C:\s\ 2 .txt正在被索引
中华人民共和国全国人民2006年
File C:\s\ 3 .txt正在被索引
中华人民共和国全国人民2006年
这花费了297 毫秒来把文档增加到索引里面去 ! c:\s
3、建立了索引之后,查询啦….

import java.io.IOException;

import org.apache.lucene.analysis.Analyzer;

import org.apache.lucene.analysis.standard.StandardAnalyzer;

import org.apache.lucene.queryParser.ParseException;

import org.apache.lucene.queryParser.QueryParser;

import org.apache.lucene.search.Hits;

import org.apache.lucene.search.IndexSearcher;

import org.apache.lucene.search.Query;

 

public class TestQuery {

public static void main(String[] args) throws IOException, ParseException {

Hits hits = null;

String queryString = ” 中华 “;

Query query = null;

IndexSearcher searcher = new IndexSearcher(” c:\\index “);

Analyzer analyzer = new StandardAnalyzer();

try {

QueryParser qp = new QueryParser(” body “, analyzer);

query = qp.parse(queryString);

} catch (ParseException e) {

}

if (searcher != null) {

hits = searcher.search(query);

if (hits.length() > 0) {

System.out.println(” 找到: ” + hits.length() + ”  个结果! “);

}

}

}

}

其运行结果:

找到: 3  个结果 !

 

Lucene 其实很简单的,它最主要就是做两件事:建立索引和进行搜索
来看一些在lucene中使用的术语,这里并不打算作详细的介绍,只是点一下而已—-因为这一个世界有一种好东西,叫搜索。

IndexWriter:lucene中最重要的的类之一,它主要是用来将文档加入索引,同时控制索引过程中的一些参数使用。

Analyzer:分析器,主要用于分析搜索引擎遇到的各种文本。常用的有StandardAnalyzer分析器,StopAnalyzer分析器,WhitespaceAnalyzer分析器等。

Directory:索引存放的位置;lucene提供了两种索引存放的位置,一种是磁盘,一种是内存。一般情况将索引放在磁盘上;相应地lucene提供了FSDirectory和RAMDirectory两个类。

Document:文档;Document相当于一个要进行索引的单元,任何可以想要被索引的文件都必须转化为Document对象才能进行索引。

Field:字段。

IndexSearcher:是lucene中最基本的检索工具,所有的检索都会用到IndexSearcher工具;

Query:查询,lucene中支持模糊查询,语义查询,短语查询,组合查询等等,如有TermQuery,BooleanQuery,RangeQuery,WildcardQuery等一些类。

QueryParser: 是一个解析用户输入的工具,可以通过扫描用户输入的字符串,生成Query对象。

Hits:在搜索完成之后,需要把搜索结果返回并显示给用户,只有这样才算是完成搜索的目的。在lucene中,搜索的结果的集合是用Hits类的实例来表示的。

上面作了一大堆名词解释,下面就看几个简单的实例吧:
1、简单的的StandardAnalyzer测试例子

import java.io.IOException;

import java.io.StringReader;

import org.apache.lucene.analysis.Analyzer;

import org.apache.lucene.analysis.Token;

import org.apache.lucene.analysis.TokenStream;

import org.apache.lucene.analysis.standard.StandardAnalyzer;

 

public class StandardAnalyzerTest {

// 构造函数,

public StandardAnalyzerTest() {

}

 

public static void main(String[] args) { // 生成一个StandardAnalyzer对象

Analyzer aAnalyzer = new StandardAnalyzer();

// 测试字符串

StringReader sr = new StringReader(” lighter javaeye com is the are on “);

// 生成TokenStream对象

TokenStream ts = aAnalyzer.tokenStream(” name “, sr);

try {

int i = 0;

Token t = ts.next();

while (t != null) { // 辅助输出时显示行号

i++; // 输出处理后的字符

System.out.println(” 第 ” + i + ” 行: ” + t.termText());

// 取得下一个字符

t = ts.next();

}

} catch (IOException e) {

e.printStackTrace();

}

}

}

 

显示结果:

第1行:lighter
第2行:javaeye
第3行:com

提示一下:
StandardAnalyzer是lucene中内置的”标准分析器”,可以做如下功能:
1、对原有句子按照空格进行了分词
2、所有的大写字母都可以能转换为小写的字母
3、可以去掉一些没有用处的单词,例如”is”,”the”,”are”等单词,也删除了所有的标点
查看一下结果与”new StringReader(“lighter javaeye com is the are on”)”作一个比较就清楚明了。
这里不对其API进行解释了,具体见lucene的官方文档。需要注意一点,这里的代码使用的是lucene2的API,与1.43版有一些明显的差别。

2、看另一个实例,简单地建立索引,进行搜索

import org.apache.lucene.analysis.standard.StandardAnalyzer;

import org.apache.lucene.document.Document;

import org.apache.lucene.document.Field;

import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.queryParser.QueryParser;

import org.apache.lucene.search.Hits;

import org.apache.lucene.search.IndexSearcher;

import org.apache.lucene.search.Query;

import org.apache.lucene.store.FSDirectory;

 

public class FSDirectoryTest {

// 建立索引的路径

public static final String path = ” c:\\index2 “;

 

public static void main(String[] args) throws Exception {

Document doc1 = new Document();

doc1.add(new Field(” name “, ” lighter?javaeye?com “, Field.Store.YES, Field.Index.TOKENIZED));

Document doc2 = new Document();

doc2.add(new Field(” name “, ” lighter?blog “, Field.Store.YES, Field.Index.TOKENIZED));

IndexWriter writer = new IndexWriter(FSDirectory.getDirectory(path, true), new StandardAnalyzer(), true);

writer.setMaxFieldLength(3);

writer.addDocument(doc1);

writer.setMaxFieldLength(3);

writer.addDocument(doc2);

writer.close();

IndexSearcher searcher = new IndexSearcher(path);

Hits hits = null;

Query query = null;

QueryParser qp = new QueryParser(” name “, new StandardAnalyzer());

query = qp.parse(” lighter “);

hits = searcher.search(query);

System.out.println(” 查找\” lighter\” 共 ” + hits.length() + ” 个结果 “);

query = qp.parse(” javaeye “);

hits = searcher.search(query);

System.out.println(” 查找\” javaeye\” 共 ” + hits.length() + ” 个结果 “);

}

}

运行结果:

查找 ” lighter ”  共2个结果
查找 ” javaeye ”  共1个结果
到现在我们已经可以用lucene建立索引了
下面介绍一下几个功能来完善一下:
1.索引格式

其实索引目录有两种格式,

一种是除配置文件外,每一个Document独立成为一个文件(这种搜索起来会影响速度)。

另一种是全部的Document成一个文件,这样属于复合模式就快了。

2.索引文件可放的位置:

索引可以存放在两个地方1.硬盘,2.内存
放在硬盘上可以用FSDirectory(),放在内存的用RAMDirectory()不过一关机就没了

FSDirectory.getDirectory(File file,  boolean  create)
FSDirectory.getDirectory(String path,  boolean  create)

两个工厂方法返回目录
New RAMDirectory()就直接可以
再和

IndexWriter(Directory d, Analyzer a,  boolean  create)

一配合就行了
如:

IndexWrtier indexWriter  =   new  IndexWriter(FSDirectory.getDirectory(“c:\\index”, true ), new  StandardAnlyazer(), true );
IndexWrtier indexWriter  =   new  IndexWriter( new  RAMDirectory(), new  StandardAnlyazer(), true );

3.索引的合并
这个可用

IndexWriter.addIndexes(Directory[] dirs)

将目录加进去
来看个例子:

import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.Hits;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.store.RAMDirectory;

public class RAMDirectoryDemo {
public void UniteIndex() throws IOException {
IndexWriter writerDisk = new IndexWriter(FSDirectory.getDirectory(” c:\\indexDisk “, true), new StandardAnalyzer(), true);
Document docDisk = new Document();
docDisk.add(new Field(” name “, ” 程序员之家 “, Field.Store.YES, Field.Index.TOKENIZED));
writerDisk.addDocument(docDisk);
RAMDirectory ramDir = new RAMDirectory();
IndexWriter writerRam = new IndexWriter(ramDir, new StandardAnalyzer(), true);
Document docRam = new Document();
docRam.add(new Field(” name “, ” 程序员杂志 “, Field.Store.YES, Field.Index.TOKENIZED));
writerRam.addDocument(docRam);
writerRam.close(); // 这个方法非常重要,是必须调用的
writerDisk.addIndexes(new Directory[] { ramDir });
writerDisk.close();
}

public void UniteSearch() {
try {
QueryParser queryParser = new QueryParser(” name “, new StandardAnalyzer());
Query query = queryParser.parse(” 程序员 “);
IndexSearcher indexSearcher = new IndexSearcher(” c:\\indexDisk “);
Hits hits = indexSearcher.search(query);
System.out.println(” 找到了 ” + hits.length() + ” 结果 “);
for (int i = 0; i < hits.length(); i++) {
Document doc = hits.doc(i);
System.out.println(doc.get(” name “));
}
} catch (ParseException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
这个例子是将内存中的索引合并到硬盘上来.
注意:合并的时候一定要将被合并的那一方的IndexWriter的close()方法调用。

4.对索引的其它操作:
IndexReader类是用来操作索引的,它有对Document,Field的删除等操作。
下面一部分的内容是:全文的搜索
全文的搜索主要是用:IndexSearcher,Query,Hits,Document(都是Query的子类),有的时候用QueryParser
主要步骤:

1 . new  QueryParser(Field字段, new  分析器)
2 .Query query  =  QueryParser.parser(“要查询的字串”);这个地方我们可以用反射api看一下query究竟是什么类型
3 . new  IndexSearcher(索引目录).search(query);返回Hits
4 .用Hits.doc(n);可以遍历出Document
5 .用Document可得到Field的具体信息了。

其实1 ,2两步就是为了弄出个Query 实例,究竟是什么类型的看分析器了。

拿以前的例子来说吧

QueryParser queryParser  =   new  QueryParser( ” name ” , new  StandardAnalyzer());
Query query  =  queryParser.parse( ” 程序员 ” );
/**/ /* 这里返回的就是org.apache.lucene.search.PhraseQuery */
IndexSearcher indexSearcher  = new  IndexSearcher( ” c:\\indexDisk ” );
Hits hits  =  indexSearcher.search(query);
不管是什么类型,无非返回的就是Query的子类,我们完全可以不用这两步直接new个Query的子类的实例就ok了,不过一般还是用这两步因为它返回的是PhraseQuery这个是非常强大的query子类它可以进行多字搜索用QueryParser可以设置各个关键字之间的关系这个是最常用的了。
IndexSearcher:
其实IndexSearcher它内部自带了一个IndexReader用来读取索引的,IndexSearcher有个close()方法,这个方法不是用来关闭IndexSearche的是用来关闭自带的IndexReader。

QueryParser呢可以用parser.setOperator()来设置各个关键字之间的关系(与还是或)它可以自动通过空格从字串里面将关键字分离出来。
注意:用QueryParser搜索的时候分析器一定的和建立索引时候用的分析器是一样的。
Query:
可以看一个lucene2.0的帮助文档有很多的子类:
BooleanQuery, ConstantScoreQuery, ConstantScoreRangeQuery, DisjunctionMaxQuery, FilteredQuery, MatchAllDocsQuery, MultiPhraseQuery, MultiTermQuery, PhraseQuery, PrefixQuery, RangeQuery, SpanQuery, TermQuery
各自有用法看一下文档就能知道它们的用法了
下面一部分讲一下lucene的分析器:
分析器是由分词器和过滤器组成的,拿英文来说吧分词器就是通过空格把单词分开,过滤器就是把the,to,of等词去掉不被搜索和索引。
我们最常用的是StandardAnalyzer()它是lucene的标准分析器它集成了内部的许多的分析器。
最后一部分了:lucene的高级搜索了
1.排序
Lucene有内置的排序用IndexSearcher.search(query,sort)但是功能并不理想。我们需要自己实现自定义的排序。
这样的话得实现两个接口: ScoreDocComparator, SortComparatorSource
用IndexSearcher.search(query,new Sort(new SortField(String Field,SortComparatorSource)));
就看个例子吧:
这是一个建立索引的例子:

import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.index.IndexWriter;

public class StandardAnalyzerDemo {
public void IndexSort() throws IOException {
IndexWriter writer = new IndexWriter(” C:\\indexStore “, new StandardAnalyzer(), true);
Document doc = new Document();
doc.add(new Field(” sort “, ” 1 “, Field.Store.YES, Field.Index.TOKENIZED));
writer.addDocument(doc);
doc = new Document();
doc.add(new Field(” sort “, ” 4 “, Field.Store.YES, Field.Index.TOKENIZED));
writer.addDocument(doc);
doc = new Document();
doc.add(new Field(” sort “, ” 3 “, Field.Store.YES, Field.Index.TOKENIZED));
writer.addDocument(doc);
doc = new Document();
doc.add(new Field(” sort “, ” 5 “, Field.Store.YES, Field.Index.TOKENIZED));
writer.addDocument(doc);
doc = new Document();
doc.add(new Field(” sort “, ” 9 “, Field.Store.YES, Field.Index.TOKENIZED));
writer.addDocument(doc);
doc = new Document();
doc.add(new Field(” sort “, ” 6 “, Field.Store.YES, Field.Index.TOKENIZED));
writer.addDocument(doc);
doc = new Document();
doc.add(new Field(” sort “, ” 7 “, Field.Store.YES, Field.Index.TOKENIZED));
writer.addDocument(doc);
writer.close();
}
}
下面是搜索的例子:

import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.Hits;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.RangeQuery;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.ScoreDocComparator;
import org.apache.lucene.search.Sort;
import org.apache.lucene.search.SortComparatorSource;
import org.apache.lucene.search.SortField;

public class aa {
public void SearchSort1() {
try {
IndexSearcher indexSearcher = new IndexSearcher(“C:\\indexStore”);
QueryParser queryParser = new QueryParser(“sort”, new StandardAnalyzer());
Query query = queryParser.parse(“4″);

Hits hits = indexSearcher.search(query);
System.out.println(“有” + hits.length() + “个结果”);
Document doc = hits.doc(0);
System.out.println(doc.get(“sort”));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (ParseException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}

public void SearchSort2() {
try {
IndexSearcher indexSearcher = new IndexSearcher(“C:\\indexStore”);
Query query = new RangeQuery(new Term(“sort”, “1”), new Term(“sort”, “9”), true);// 这个地方前面没有提到,它是用于范围的Query可以看一下帮助文档.
Hits hits = indexSearcher.search(query, new Sort(new SortField(“sort”, new MySortComparatorSource())));
System.out.println(“有” + hits.length() + “个结果”);
for (int i = 0; i < hits.length(); i++) {
Document doc = hits.doc(i);
System.out.println(doc.get(“sort”));
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}

public class MyScoreDocComparator implements ScoreDocComparator {
private Integer[] sort;

public MyScoreDocComparator(String s, IndexReader reader, String fieldname) throws IOException {
sort = new Integer[reader.maxDoc()];
for (int i = 0; i < sort.length; i++) {
Document doc = reader.document(i);
sort[i] = new Integer(doc.get(“sort”));
}
}

public int compare(ScoreDoc i, ScoreDoc j) {
if (sort[i.doc] > sort[j.doc])
return 1;
if (sort[i.doc] > 0) {
return -1;
}
return 0;
}

public int sortType() {
return SortField.INT;
}

public Comparable sortValue(ScoreDoc i) {
// TODO 自动生成方法存根
return new Integer(sort[i.doc]);
}
}

public class MySortComparatorSource implements SortComparatorSource {
private static final long serialVersionUID = -9189690812107968361L;

public ScoreDocComparator newComparator(IndexReader reader, String fieldname) throws IOException {
if (fieldname.equals(“sort”))
return new MyScoreDocComparator(“sort”, reader, fieldname);
return null;
}
}
}

SearchSort1()输出的结果没有排序,SearchSort2()就排序了。
2.多域搜索MultiFieldQueryParser
如果想输入关键字而不想关心是在哪个Field里的就可以用MultiFieldQueryParser了
用它的构造函数即可后面的和一个Field一样。
MultiFieldQueryParser. parse(String[] queries, String[] fields, BooleanClause.Occur[] flags, Analyzer analyzer)                                          ~~~~~~~~~~~~~~~~~
第三个参数比较特殊这里也是与以前lucene1.4.3不一样的地方
看一个例子就知道了
String[] fields = {“filename”, “contents”, “description”};
BooleanClause.Occur[] flags = {BooleanClause.Occur.SHOULD,
BooleanClause.Occur.MUST,//在这个Field里必须出现的
BooleanClause.Occur.MUST_NOT};//在这个Field里不能出现
MultiFieldQueryParser.parse(“query”, fields, flags, analyzer);

1、lucene的索引不能太大,要不然效率会很低。大于1G的时候就必须考虑分布索引的问题

2、不建议用多线程来建索引,产生的互锁问题很麻烦。经常发现索引被lock,无法重新建立的情况

3、中文分词是个大问题,目前免费的分词效果都很差。如果有能力还是自己实现一个分词模块,用最短路径的切分方法,网上有教材和demo源码,可以参考。

4、建增量索引的时候很耗cpu,在访问量大的时候会导致cpu的idle为0

5、默认的评分机制不太合理,需要根据自己的业务定制



快乐成长 每天进步一点点